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Abstract

Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are in-

vestigated experimentally with a squeezed state coupled into the internal idler mode of the

NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a min-

imum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in

a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper

adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum

noise can be completely suppressed so that noise-free amplification is achieved. It is also

shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated

state, can realize quantum tapping of optical information.

1 Introduction

It has been known since the date when optical amplification was first realized that fundamental

principles of quantum mechanics play an important role in the noise performance of a linear

amplifier [1, 2]. For example, it was found [3, 4] that even in an ideal case when all the classical

noise is eliminated, "extra" quantum noise from an amplifier's internal modes will add to the

amplifier's output thus preventing noise-free amplification and degrading the output signal-to-

noise ratio (SNR) relative to that of the input. Such "extra" quantum noise would destroy any

coherent quantum superpositions that are often encountered in the microscopic world, should one

try to amplify the microscopic quantum superposition to a macroscopic scale so as to produce a

paradox such as SchrSdinger's Cat [5].

However, Caves pointed out in a systematic analysis [6] of quantum noise in a linear amplifier

that noiseless amplification is possible with a phase-sensitive amplifier (for which the gain depends

on the phase of the input signal). On the other hand, for a phase-insensitive amplifier, although

extra noise cannot be avoided as stated above, it may be rearranged, according to Caves' analysis.

More specifically, a phase-insensitive amplifier is described by a general quantum model [6, 7]:

a°"t= _ 5'" +/_, (1)
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where h _''°_* is the annihilation operator for the input and output signal, G is the power gain

of the amplifier and F is an operator related to the internal modes of the amplifier and satisfies

[/_, fi't] = 1 - G. The quantum fluctuations in/_ will give rise to the "extra noise" added to the

output signal. From Eq.(1), one can derive Caves' uncertainty relation [6]

1 G_ 1 ,(A1A2) 1/2 >_ _ [1 - I (2)

where A_ -- ((AF_)2)/G is the input equivalent noise added to the quadrature-phase amplitudes

X_(i = 1,2), with Xa --- (h+fit)/2,X2 - (h-ht)/2i, F1 =- ([_+ P)/2, and F2 - (-f'-_'t)/2i. Thus

the noise in amplification in one quadrature-phase amplitude where the signal is encoded can be

suppressed while the extra noise demanded by Eq.(2) is mostly coupled into the unused conjugate

quadrature, with their noise product satisfying Eq.(2). By following this line of reasoning, it was

suggested [8, 9, 10, 11] that by coupling the amplifier's internal modes to a squeezed vacuum

instead of the usual vacuum state, the suppression of added noise for one quadrature can be

achieved as stated above.

In the analysis of Caves, it was assumed that the input field 5 i" is independent of the internal

modes of the amplifier described by .f-'. On the other hand, the situation will be totally different

if fii,, and F are correlated. Notice that the quantities in Eq.(1) are amplitudes of the relevant

fields. Thus interference between the amplitudes of 5 i'_ and F may give rise to cancellation of

their quantum fluctuations and lead to noise reduction in the amplifier's output. Quantum noise
subtraction has been realized with various kinds of correlated quantum fields [12, 13, 14].

The distribution of information in the modern age requires division of incoming information

into identical pieces for sharing by many users. An opticM tap is a kind of information divider

by optical means, with which one can extract the needed information while at the same time

leaving the information readable by other users down the line [15]. The challenge is of course to

tap the information without degradation of the signal-to-noise ratio (SNR) for both tapped and

transmitted information. An optical divider or tap is usually a four-port device with two inputs

and two outputs (the law of quantum mechanics requires there to be an extra input). A typical

divider is simply a beamsplitter: information comes in one input and is divided into two outputs.

However, the uncorrelated quantum noise from the other unused port will add to the outputs and

degrade their SNRs. On the other hand, it is known that quantum noise can be suppressed with

a squeezed state. Shapiro thus suggested [15] to couple the unused port to a squeezed vacuum to

reduce its quantum noise. Another technique is to use two correlated quantum fields as the two

inputs. Quantum correlation between the two inputs will subtract out the quantum noise in the

outputs. Such techniques can be used in any four-port system for information division.

In the following sections, we will mainly discuss quantum fluctuations in a nondegenerate

optical parametric amplifier (NOPA) which has only one internal mode called "idler". In section

2, we first describe an experiment in which we couple a squeezed light field into the internal idler

mode of the NOPA and demonstrate quantum noise reduction by the scheme of rearranging the

quantum noise between two conjugate quadrature-phase amplitudes. In section 3, we will discuss

quantum noise cancellation in amplification with a correlated quantum state where noise-free

amplification can be achieved with moderate correlation. In section 4, we will consider the NOPA

as a four-port system (2 inputs and 2 outputs) and show that it can be used as a quantum optical

information tap when the inputs are coupled either to a squeezed state or to a correlated quantum

state.
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2 Quantum Noise Reduction in Optical Amplification

with a Squeezed State

A nondegenerate optical parametric amplifier (NOPA) is a_ optical amplifier that utilizes nonlinear

coupling to convert energy in a pump beam(s) to a signal beam. It can be realized in either three-

wave mixing or four-wave mixing processes. Besides the pump beam(s) and the input-output

signal beams, another beam called "idler" is coupled to the pump and signal beams at the same

time. This idler beam labled as _i_ corresponds to the so-called internal mode of the amplifier

discussed earlier. In terms of the quantities in Eq.(1), _" = x/G'- 1 _i-t and G is related to the

pump beam. Fig.1 shows a NOPA with a coherent signal input and its idler mode coupled to

a squeezed vacuum generated by a squeezer. Detailed descriptions of each device used in the

diagram can be found in Ref.[14b]. In the linear operating regime (small input signal), the pump

beam is undepleted and does not contribute any extra quantum noise to the output [16]. Thus

Eq.(1) becomes

ao-t= _ ai,, + Gv/-_-Z"i'_1 _i,_t. (3)

We can rewrite Eq.(3) with the quadrature-phase amplitude _'c(0) = e e -i° + fiteie (c = a,b) as

X°_'t(O) = v_ X_"(0) + V_- aXe"(-0). (4)

If the fields fi and b are independent of each other, the output noise of the amplifier is then given
by

U°_'t(O) = G Ui_"(O) + (G- 1)U_"(-0), (5)

where N,(O) =_ (()(, - (X,))2) (i = a, b).

signal in

_, PUMP

NOPA(G) ]1 _ signal out

idler _ _ _ _/out

SQUEEZER

FIG. 1. Diagram for the experiment of quantum noise reduction with a NOPA.

The shaded part of the noise circle for the amplified signal corresponds to amplified

input signal noise and the rest of the noise comes from the extra noise contributed by

the amplifier's internal modes
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Usually, the idler mode b is coupled to empty vacuum and N_"(-O). = l, resulting in extra

noise G - 1 in the output. On the other hand, with the idler mode b coupled to a squeezed

vacuum, for the squeezed quadrature of 0 = 0_, we have Nb- = Nib'_(--8-) < 1, thus the extra

noise at the output due to the idler cart be reduced. For the other quadrature, however, the extra

noise will be enhanced. Therefore, as we change the phase and look at different quadratures,

we will obtain a phase-sensitive noise level for the output with noise reduction at some phases

and noise enhancement at other phases, as shown in Fig.2, where we plot the signal output noise

level as a function of local oscillator phase. It is found that the minimum noise level in the

phase-sensitive curve ii drops below the phase-insensitive curve i, which is the output noise level

when the idler mode is coupled to the vacuum, thus demonstrating quantum noise reduction in

the amplification process. The phase-insensitive curve i (_a) also gives a measure of quantum

noise gain as compared to the vacuum noise level 01o (Gq = _a/qJo) [14b]. The dashed trace iv

corresponds to the output noise level expected for a lossless system with perfectly squeezed idler

at the same operating gain of the amplifier. To better quantify the noise reduction, we tune the

phase to 8 = 0_ and block and unblock the injected squeezed light field. When the squeezed light

is blocked, it corresponds to a vacuum state coupled to the idler mode. In Fig.3, we plot the output

noise level as we turn "ON" and "OFF" the squeezed light. By performing the same measurement

at different gains of the amplifier, we can plot the amount of noise redution A ---- d_(O_)/¢a

against the quantum noise gain Gq as in Fig.4. The best noise reduction of -0.7 dB is observed

at Gq = 2.6 (4.2 dB). The solid curve in Fig.4 is a theoretical prediction for our system with

0.3% internal round-trip loss for the NOPA and with 30% external loss (mainly propagation and

detection losses), as determined by independent measurements [14b]. The amount of squeezing
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FIG. P. Spectral density of photocurrent fluctuations for i_ generated by NOPA's

signal output _t as a function of the local oscillator phase O. Trace i is the amplified

noise level ¢ba when the idler mode is in a vacuum state, while trace ii corresponds to

the case when the idler is in a squeezed vacuum state. Trace iii is the vacuum noise

level t_o and the dashed trace iv corresponds to the output noise level ezpected for a

lossless system with perfectly squeezed idler.
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FIG. 8. Amplified noise level of the signal output for NOPA. "OFF" correponds to

the output noise level _a for a vacuum state coupling to the idler mode. "ON" 9ires

the output noise level _(0_) for a squeezed state input to the idler. The noise levels

are referenced to the vacuum noise level _o.
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FIG. 4. Quantum noise reduction A_ for the amplified output signal as a function

of the detected quantum noise gain Gq for a squeezed idler input of iV_ = 0.52. The

solid curve is the theoretical prediction for our system and the dashed curve ii is for a

lossless system with perfect squeezing for the idler.
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that is coupled into the idler mode is also directly measured to be N_"(O_) = 0.52. Thus all the

relevant parameters in the theory for our experiment are measured independently. It is seen that

the experimental data fit the theoretical prediction quite well. The dashed trace ii corresponds

to the maximum possible noise reduction with a coherent signal input in a lossless system with

perfect squeezing coupled to the idler mode (N_"(O_) = 0), in which no extra noise is added to

the amplified output.

3 Cancellation of Quantum Fluctuations in Optical Am-

plification with Correlated Quantum Fields

In the discussion of last section, we assumed that the quantum fluctuations in the signal input

and the amplifier's internal idler mode are uncorrelated. When their quantum fluctuations are

correlated, however, we cannot write the output noise as in Eq.(5) because the correlation between

)(_in(0) and )(_"(-0) may result in cancellation (or enhancement) of their fluctuations through

destructive (or constructive) interference.

The quantity to describe the degree of correlation between fields _ and b is the correlation

function defined as
(ZX2oA2b)

co_- (IGbl< 1). (6)

Assume that A)(_ and A)_b are positively correlated, that is, C_s > 0 and that the fluctuations

of field 5 are smaller than or equal to that of field b, that is, N_ _= (A2X_) N (A2Xb). We will

encode the signal only into the field fi ((X_) -= A 5¢ 0 and ()_b) = 0) because it has less noise.

The signal-to-noise ratio (SNR) for the field fi is then R_ = A2/N_. On the other hand, because

the two fields are correlated, we have for the noise in the difference of the two fields:

Nd -- ((A2_- ,_,_A)?_)2>= <A22o)(1 --C_b) < N_,

where we have minimized Na by choosing the optimized coefficient )_,,, = <a2.a2b)/(a22_).
Am = Cab when (A22_) = (A22b). Thus the noise in the difference of two fields is smaller than the

noise in the single field ft. So the optimized signal-to-noise ratio (SNR) is Rd = (Y(_-,_mXb)2/Nd =

A2/N,,(1 - C_b ) if both 6 and b fields are employed. Obviously, Rd > R_.
Next let us consider the situation when the fields fi and b are injected into the signal and idler

ports of the amplifier, respectively. We adjust the phase of the pump beam so that Eq.(4) becomes

27' ,/-d 2':- ,/-d- "'"= 1xb . (7)

Thus the amplified signal becomes

(2 °_,) = V_(2 i') = Av/'G. (8)

The noise of the amplified signal output is calculated as

N °_' = (A_)?: _') = G((AX'_" - _/(G- 1)/GA2_")2>, (o)
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FIG. 5. Diagram for a beamsplitter.

which reaches minimum value of

N.°_t = G((AX. - AmAXb) 2) = G(A2X.)(I --C_b ) = GNd, (I0)

when ¢(G - 1)/G = Am = C_b. Note that Eqs.(8) and (9) are for the signal beam alone; mixing of

the field 5 with the field b as required for Nd has taken place within the amplifier itself. Combining

Eqs.(8,10), we obtain for the output SNR

RO_,t = i_(o_,t_2lN o_,_. = A2G/N_G = Rd. (11)Q _''a I I _ "am$n

Therefore the output SNR R_ t is equal to the input SNR Rd (and > R_) with the signal amplified

by the gain G. No extra noise is added in the amplification process. However, noise-free ampli-

cation can only be achieved at some specific gain G = 1/(1 - A_) determined by the correlation

function C,b between the two fields fi and b. When the two fields are close to perfect correlation

with Am = C,,b ---* 1, the gain G can be arbitrarily large.

4 Quantum Optical Information Tapping with Squeezed

States and Correlated Quantum Fields

The concept of quantum optical information tapping was first discussed by Shapiro [15] for a

beamsplitter with squeezed state coupled to one of the input ports. Consider a beamsplitter

shown in Fig.5, where the input port fi2 is in a squeezed state with the degree of squeezing

denoted by S. A coherent signal of size A is injected into the other port labled as 51 with input

SNR R_" = A 2. It can be easily calculated [15] that for a beamsplitter with transmissivity T and

reflectivity R, the output SNR at both output ports are given as

TA 2 RA 2
RO,. = l .t _

1 (T + RS)' (R + TS)"

The efficiency of this information tapping scheme can be quantified [17] as the ratio of the output
SNRs to the input SNRs:

• R_ "t + R_ "t T R 2TR(1 - S) + S

_7- R'x" - T + RS + R + TS - TR(I - S) 2+ S' (12)
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2

which has maximum value of _ when T = R = 1/2. It is seen that

2 > _/> i (13)

for squeezed state input at port 2 (S < 1). On the other hand, for classical state (S _ 1), we

always have q < 1 [18]. Thus Eq.(13) is the criterion for realization of a quantum tap for optical

information.

Quantum information tapping can also be achieved for a bean/splitter with correlated quantum

fields h, b as the two inl_uts. For this case, let us assume the two fields have the same noise level,

that is, (A2X_) = (A2Xb). For a beamsplitter, we have for the quadratures of the fields:

_°_'t V_)f_ '_ _'/L_ '_, (14a)1 --"

where we only write down the X-quadratures, in which information is encoded.

It is easy to show that R_ u' =/_d " when R/T = _ = C_b as before in Section 3. For output

p_ut = R_n

port 2, we find
n(1 -C_b )

- C_b)C_ > 1. (15)=1+( 1 2 2
] + 3c%

Thus the information tapping efficiency

R(1 -C_b )
_=I+

1 + 2_c=b

Therefore quantum optical information tapping is achieved with correlated fields. Notice here we

choose R, T so that R_ 't =/_d ". Of course, we could choose R, T to maximize _7. However, T/will

never be close to the perfect value of 2 even for perfect correlation. This is because of the plus

sign in Eq.(14b) required by unitarity for any beamsplitter; and it can not be changed to a minus

sign no matter what you do with the relative phase of the two fields. In the following, we will see
a different situation for the NOPA.

For the NOPA, there are also two inputs (signal and idler) and two corresponding outputs, as

shown in Fig.6. With proper phase adjustment of the pump, the input-output relations for NOPA

are given as
a = v"5 a" - 1 Y"*,

_in

A.

b m

signal in

F

idler in

NOPA

(G)

signal out

f

idler out

FIG. 6. Diagram of NOPA as a four-port device.
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or in terms of the quadrature-phase amplitudes

Ha _ ^ in_o_, v_ )_'_- v_- 1x_, (16a)

= "'" (16b)2; _ v_"-v_-I xo.

First, let us assume that a coherent signal of size A is injected into the signal port for amplification

and squeezed state of squeezing S is injected into the idler port. The input SNR is then R i" = A 2.

From the input-output relations in Eqs.(16), we can calculate the output SNRs as

R,_,_t= GA 2 R,_b,,t= (G- 1)A 2 (17)
G + (G- 1)S' GS + G- 1"

Hence the information tapping efficiency ,7 has the form of

G (G-l) 2G(G-1)(I+S)+S 2 for G_>>S. (18)
= G + (C- 1)S + CS + C- 1 = C(C- 1)(1+ S)_+ S -_ 1+----_

Thus quantum optical information tapping is possible ('7 > 1) as long as S < 1. When G 2 >> S,

'7 approaches 2/(1 + S), which is the same as the result of Shapiro [15] for a beamsplitter. Of

course, in this process, the signal is amplified.

As for the situation with correlated quantum fields as the inputs, for the parameters discussed

in section 3, we know that R °ut = Rd. From Eqs.(16), we can easily find out R_ '' for the idler

output. For the parameters given in section 3, we have

(2_ _')= -Av/-G - l,

and

(A2)(_"') = (I - Ai)[(A_2y) - (A2)(_")]+ GNd = GNe for (A22_ i")= (A22_">.

Therefore, R_ "' = Rd(G - 1 )/G and

G-1

'7=1+ G --l+C_b--.2 for C,_b---*l. (19)

where the second equality follows since G is chosen as in section 3, namely, G = 1/(1 - C_b).

Eq.(19) shows that we can always realize quantum optical information tapping in NOPA with

correlated quantum fields.

In fact, for any linear four-port device with two inputs and two outputs, we can realize quantum

optical information tapping with input of either a squeezed state or a correlated quantum state..

5 Acknowledgments

The work was supported by the Office of Naval Research and by the National Science Foundation.

473



References

[1] K. Shimoda, H. Takahasi, and C. H. Townes, J. Phys. Soc. Jpn. 12, 686 (1957).

[2] R. Serber and C. Townes, in Quantum Electronics, edited by C. H. Townes (Columbia Univ.

Press, New York, 1959), pp.233-255.

[3] H. Heffner,Proc. IRE 50, 1604 (1962).

[4] H. A. Haus and J. A. Mullen, Phys. Rev. 128, A2407 (1962).

[5] R.J. Glauber, in Frontiers in Quantum Optics, edited by E. R. Pike and S. Sarkar (IOP,

Bristol, 1986).

[6] C. M. Caves,Phys. Rev. D26, 1817 (1982).

[7] M. Ley and R. Loudon, Optica Acta 33, 371 (1984).

[8] B. Yurke and J. S. Denker, Phys. Rev. A29, 1419 (1984).

[9] M.-A. Dupertuis, S. M. Barnett, and S. Stenholm, J. Opt. Soc. Am. B4, 1102 (1987).

[10] D: T. Pegg and J. A. Vaccaro, Opt. Comm. 61,317 (1987).

[11] G. J. Milburn, M. L. Steyn-Ross, and D. F. Walls, Phys. Rev. A35, 4443 (1987).

[12] A. Heidmann, R. J. Horowicz, S. Reynaud, E. Gincobino, and C. Fabre, Phys. Rev. Lett. 59,

2555 (1987).

[13] O. Aytfir,and P. Kumar, Phys. Rev. Lett. 65, 1551 (1990).

[14] (a) Z. Y. Ou, S. F. Pereira, K. C. Peng, and H. J. Kimble, Phys. Rev. Lett. 68, 3663 (1992).

(b) Z. Y. Ou, S. F. Pereira, and H. J. Kimble, Appl. Phys. B55, 265 (1992).

[15] J. H. Shapiro, Opt. Lett. 5, 351 (1980).

[16] M. J. Collett and D. F. Walls, Phys. Rev. Lett. 61, 2442 (1988).

[17] J. Ph. Poizat and P. Grangier, Phys. Rev. Lett. 70, 271 (1993).

[18] J. F. Roch, G. Roger, P. Grangier, J. -M. Courty, and S. Reynand, Appl. Phys. B55, 291

(1992).

474


